Презентация по алгебре 10 класса "Производная"
(956.1 Kb)
| 07.11.2013, 09:32 |
Багаутдинова Рания Фаизовна |
учитель математии, МБОУ "Старо-Арышская ООШ" |
Презентация учителя математики МБОУ «Старо – Арышская ООШ» Багаутдиновой Рании Фаизовны Определение производной, ее геометрический и физический смысл Определение производной Пусть на некотором интервале (a, b) определена функция y= f(x). Возьмем любую точку x0 из этого интервала и зададим аргументу x в точке x0 произвольное приращение ∆x такое, что точка x0 +∆ x принадлежит этому интервалу. Функция получит приращение Геометрический смысл производной Пусть функция y= f(x) определена на некотором промежутке (a, b). Тогда тангенс угла наклона секущей МР к графику функции. Физический смысл производной 1. Задача об определении скорости движения материальной частицы Пусть вдоль некоторой прямой движется точка по закону s= s(t), где s- пройденный путь, t- время, и необходимо найти скорость точки в момент t0 . К моменту времени t0 пройденный путь равен s0 = s(t0), а к моменту (t0 +∆t) – путь s0 + ∆s=s(t0 +∆t). Тогда за промежуток ∆t средняя скорость будет Чем меньше ∆t, тем лучше средняя скорость характеризует движение точки в момент t0. Поэтому под скоростью точки в момент t0 следует понимать предел средней скорости за промежуток от t0 до t0 +∆t, когда ∆t⇾0 , т.е. 2. ЗАДАЧА О СКОРОСТИ ХИМИЧЕСКОЙ РЕАКЦИИ Пусть некоторое вещество вступает в химическую реакцию. Количество этого вещества Q изменяется в течение реакции в зависимости от времени t и является функцией от времени. Пусть за время ∆t количество вещества изменяется на ∆Q , тогда отношение будет выражать среднюю скорость химической реакции за время ∆t, а предел этого отношения - скорость химической реакции в данный момент времени t. Правая и левая производные Определение. Правой (левой) производной функции f(x) в точке x = x 0 называется правое (левое) значение предела отношения при условии, что это отношение существует. АЛГОРИТМ вычисления производной Производная функции y= f(x) может быть найдена по следующей схеме: 1. Дадим аргументу x приращение ∆x≠0 и найдем наращенное значение функции y+∆y= f(x+∆x). 2. Находим приращение функции ∆y= f(x+∆x) - f(x). 3. Составляем отношение 4. Находим предел этого отношения при ∆x⇾0, т.е. ( если этот предел существует). Основные правила дифференцирования Эти правила могут быть легко доказаны на основе теорем о пределах. Производные основных элементарных функций Производная сложной функции Теорема. Если функция дифференцируема в точке x, а функция дифференцируема в соответствующей точке , то сложная функция дифференцируема в точке x, причем: или в других обозначениях т.е. производная сложной функции равна произведению производной функции по промежуточному аргументу на производную промежуточного аргумента по x. Доказательство: Аргументу x дадим приращение ∆x. Приращение x+ ∆x соответствует приращение функции ∆u, которое в свою очередь вызывает приращение ∆y, которое в силу дифференцируемости функции y= f(u) можно представить в виде В последнем выражении Окончательно получаем Производная обратной функции Пусть требуется найти производную функции у = f(x) при условии, что обратная ей функция x = g(y) имеет производную, отличную от нуля в соответствующей точке. Для решения этой задачи дифференцируем функцию x = g(y) по x : Логарифмическое дифференцирование Рассмотрим функцию Учитывая полученный результат, можно записать Отношение называется логарифмической производной функции f(x). Способ логарифмического дифференцирования состоит в том, что сначала находят логарифмическую производную функции, а затем производную самой функции по формуле Способ логарифмического дифференцирования удобно применять для нахождения производных сложных, особенно показательных функций, для которых непосредственное вычисление производной с использованием правил дифференцирования представляется трудоемким.Весь текст материала находится в приложенном файле
|
Категория: Презентации | Добавил: raniya
|
Просмотров: 6778 | Загрузок: 1092
| Рейтинг: 0.0/0 |
Понравился материал? Оставьте свой комментарий ;) Всего комментариев: 0 | |
|
|
|
|
|
|