Введение
Актуальность
Одной из центральных задач начального курса математики является формирование прочных и сознательных вычислительных навыков. Практика современной школы показывает, что в основе формирования навыка вычислений должно лежать осмысление тех конкретных действий, от которых зависят правильность и скорость выполнения вычислений. Ученик, прежде всего, должен осознать цель, ради которой он формирует тот или иной навык. А учитель должен помочь ему в осознании этой цели. Вычислительные навыки необходимы как в практической жизни каждого человека, так и в учении.
● Теоретическая подготовка педагогов и увеличение временных рамок
для создания программ
● Сотрудничество с родителями, педагогами, психологом, наблюдение за
обучающимися с использованием инновационных технологий
● Индивидуальная работа с родителями
Бытовые представления ориентировались:
● проведение массовых мероприятий для параллелей школы ( творческие выставки работ учащихся);
● занятия по выбору учащихся в секциях, кружках;
● индивидуальное и коллективное участие в городских мероприятиях
Основная информация
Для успешного развития учебного материала одной плановой классной работы не всегда бывает достаточно. Для того чтобы учащиеся легко воспринимали и полностью понимали ту или иную тему необходима качественная и систематическая внеклассная работа по предметам.
Внеурочная работа по математике составляет неразрывную часть учебно-воспитательного процесса обучения математике, сложного процесса воздействия на сознание и поведение младших школьников, углубления и расширения их знаний и навыков.
Проводить внеурочные занятия с детьми по математике надо начинать как можно раньше, чтобы у одних пробудить, а у других укрепить интерес к математике и желание заниматься ею. Поэтому основными целями внеурочной работы должны стать: развитие у учащихся интереса к предмету, накопление определенного запаса математических фактов и сведений, умений и навыков, дополняющих и углубляющих знания, приобретаемые в основном курсе
Внеклассная работа существенно отличается от классно-урочной формы организации учебного процесса, и в начальной школе она имеет свои особенности:
1. Некоторая произвольность выбора тематики занятий, они не регламентированы по содержанию, но материал, предъявляемый детям, должен соответствовать их знаниям, умениям и навыкам.
2. Разнообразие форм и видов работы с учащимися.
3. Особый занимательный материал, широкое использование игровых форм и элементов соревнования.
4. Занятия не регламентированы по времени.
5. Занятия проводятся в группах учеников, количество в которых не регламентировано, так же как и их возраст
При проведении внеурочных занятий по математике, необходимо соблюдать основные дидактические принципы: научности, активности учащихся, наглядности. При подборе содержания работы следует учитывать возрастные и индивидуальные особенности учащихся.
Этапы формирования вычислительного навыка
Формирование у младших школьников вычислительных навыков остаётся одной из главных задач начального обучения математике, поскольку вычислительные навыки необходимы при изучении арифметических действий.
Вычислительный навык – это высокая степень овладения вычислительными приёмами, это вычислительный приём, доведенный до автоматизма. Приобрести вычислительный навык – значит, для каждого случая знать какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия, и выполнять эти операции достаточно быстро. В качестве сформированности полноценного вычислительного навыка можно выделить следующие критерии:
- правильность;
- осознанность;
- рациональность;
- обобщённость;
- автоматизм;
- прочность.
1. Подготовка к введению нового приема.
На этом этапе создается готовность к усвоению которых основывается приём вычислений, а также овладеть каждой операцией, составляющей вычислительного приёма.
2. Ознакомление с вычислительным приемом.
На этом этапе ученики усваивают суть приёма: какие операции надо выполнять, в каком порядке и почему именно так можно найти результат арифметического действия.
3. Закрепление знания приема и выработка вычислительного навыка.
На этом этапе ученики должны твердо усвоить систему операций, составляющие приём, и быстро выполнить эти операции; то есть овладеть вычислительным навыком.
Задания, направленные на формирование вычислительных навыков в начальной школе
1.Задания с использованием сравнений:
Для активизации познавательной деятельности учащихся при формировании вычислительных можно использовать метод наблюдений. В процессе наблюдения учащиеся сравнивают, анализируют, делают выводы. Полученные таким образом знания являются более осознанными и тем самым лучше усваиваются.
2.Задания на классификацию и систематизацию знаний.
Умение выделять признаки предметов и устанавливать между ними сходство и различие — основа заданий на классификацию. Из курса математики известно, что при разбиении множества на классы необходимо выполнять следующие условия:
1) ни одно из подмножеств не пусто;
2) подмножества попарно не пересекаются;
3) объединение всех подмножеств составляет данное множество.
3.Задания на выявление общего и различного.
Выделение существенных признаков математических объектов, их свойств и отношений — основная характеристика таких заданий. Благодаря им учащиеся могут самостоятельно «открывать» математические свойства и способы действий (правила), которые в математике строго доказываются.
4.Задания с многовариантными решениями.
Многовариантные задания — это система упражнений, выполнение которых поможет глубоко и осознано усвоить правило и выработать необходимый вычислительный навык на его основе.
5.Задания с элементами занимательности.
Такие задания, в основном, направлены на отработку вычислительных навыков. Элемент занимательности увлекает детей, они стремятся выполнить все действия правильно и посмотреть к чему это приведет.
6.Задания на нахождение значений математических выражений.
Предлагается в той или иной форме математическое выражение, требуется найти его значение
7.Комбинаторные задачи.
Комбинаторика — один из разделов современной математики.
Комбинаторные задачи служат средством развития мышления детей, воспитания у них умения применять полученные знания в различных ситуациях посредством выработки навыков и повторения пройденного.
Вывод
Умение выполнять вычислительный прием – есть умение выполнять систему умственных операций, следовательно, контроль – есть умение осознанно контролировать выполняемые операции. При развитии действия контроля на уроках математики, совершенствуется умение осознанно выполнять вычислительные приемы. И, наоборот, в случае отсутствия действия контроля, сформированность вычислительных приемов и навыков имеет низкий уровень. Следовательно, процесс выполнения вычислительного приема и осознанное его контролирование, должны быть двумя сторонами единого процесса, процесса овладения вычислительными приемами и навыками.
С целью изучения интереса детей к математике, вычислительным приемам нами был проведен письменный опрос, который включал следующие вопросы:
- Какие задания тебе нравится выполнять на уроках математики?
- Любишь ли ты выполнять вычисления?
- С удовольствием ли ты находишь значения выражений?
- Какие ошибки чаще всего допускаешь в вычислениях?
- Можешь ли самостоятельно найти и исправить ошибки, допущенные в вычислениях?
- Нравится ли тебе самостоятельно открывать новые способы вычислений?
- Всегда ли делаешь проверку выполняемых вычислений?
|