Определение производной, ее геометрический и физический смысл
Определение производной Пусть на некотором интервале (a, b) определена функция y= f(x). Возьмем любую точку x0 из этого интервала и зададим аргументу x в точке x0 произвольное приращение ∆x такое, что точка x0 +∆ x принадлежит этому интервалу. Функция получит приращение
Геометрический смысл производной Пусть функция y= f(x) определена на некотором промежутке (a, b). Тогда тангенс угла наклона секущей МР к графику функции.
Физический смысл производной 1. Задача об определении скорости движения материальной частицы Пусть вдоль некоторой прямой движется точка по закону s= s(t), где s- пройденный путь, t- время, и необходимо найти скорость точки в момент t0 . К моменту времени t0 пройденный путь равен s0 = s(t0), а к моменту (t0 +∆t) – путь s0 + ∆s=s(t0 +∆t). Тогда за промежуток ∆t средняя скорость будет Чем меньше ∆t, тем лучше средняя скорость характеризует движение точки в момент t0. Поэтому под скоростью точки в момент t0 следует понимать предел средней скорости за промежуток от t0 до t0 +∆t, когда ∆t⇾0 , т.е.
2. ЗАДАЧА О СКОРОСТИ ХИМИЧЕСКОЙ РЕАКЦИИ Пусть некоторое вещество вступает в химическую реакцию. Количество этого вещества Q изменяется в течение реакции в зависимости от времени t и является функцией от времени. Пусть за время ∆t количество вещества изменяется на ∆Q , тогда отношение будет выражать среднюю скорость химической реакции за время ∆t, а предел этого отношения - скорость химической реакции в данный момент времени t.
Правая и левая производные Определение. Правой (левой) производной функции f(x) в точке x = x 0 называется правое (левое) значение предела отношения при условии, что это отношение существует.
АЛГОРИТМ вычисления производной Производная функции y= f(x) может быть найдена по следующей схеме: 1. Дадим аргументу x приращение ∆x≠0 и найдем наращенное значение функции y+∆y= f(x+∆x). 2. Находим приращение функции ∆y= f(x+∆x) - f(x). 3. Составляем отношение 4. Находим предел этого отношения при ∆x⇾0, т.е. ( если этот предел существует).
Основные правила дифференцирования
Эти правила могут быть легко доказаны на основе теорем о пределах.
Производные основных элементарных функций Производная сложной функции Теорема. Если функция дифференцируема в точке x, а функция дифференцируема в соответствующей точке , то сложная функция дифференцируема в точке x, причем: или в других обозначениях т.е. производная сложной функции равна произведению производной функции по промежуточному аргументу на производную промежуточного аргумента по x. Доказательство: Аргументу x дадим приращение ∆x. Приращение x+ ∆x соответствует приращение функции ∆u, которое в свою очередь вызывает приращение ∆y, которое в силу дифференцируемости функции y= f(u) можно представить в виде В последнем выражении Окончательно получаем Производная обратной функции Пусть требуется найти производную функции у = f(x) при условии, что обратная ей функция x = g(y) имеет производную, отличную от нуля в соответствующей точке. Для решения этой задачи дифференцируем функцию x = g(y) по x :
Учитывая полученный результат, можно записать Отношение называется логарифмической производной функции f(x). Способ логарифмического дифференцирования состоит в том, что сначала находят логарифмическую производную функции, а затем производную самой функции по формуле
Способ логарифмического дифференцирования удобно применять для нахождения производных сложных, особенно показательных функций, для которых непосредственное вычисление производной с использованием правил дифференцирования представляется трудоемким.
Весь текст материала находится в приложенном файле
Свидетельство о регистрации СМИ: Эл №ФС77-54568 от 21.06.2013г. выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (РОСКОМНАДЗОР).
Соучредители: ИП Львова Е.С., Власова Н.В.
Главный редактор: Львова Елена Сергеевна
info@pochemu4ka.ru
Тел. 89277797310
Информация на сайте обновлена: 22.11.2024
Сайт для учителей, воспитателей и педагогических работников.
Все права на материалы сайта охраняются в соответствии с законодательством РФ, в том числе законом РФ «Об авторском праве и смежных правах». Любое использование материалов с сайта запрещено без письменного разрешения администрации сайта.